Smart Waste collection utilising sensors gaining traction – IoT ANZ

Although the smart waste collection technology industry is still in an early phase, Internet of Things (IoT)-enabled smart bins and sensors are slowly gaining traction in ANZ and globally.

According to a recent report by US research company Navigant, the market is expected to grow from US$57.6 million (A$77 million) in 2016 to more than US$223 million (A$300 million) in 2025, with a 16.3 per cent compound annual growth rate.

“Currently, most municipal waste collection operations focus on emptying containers according to predefined schedules,” explains Christina Jung, a Research Associate with Navigant. “This is inevitably inefficient, with half-full bins being emptied, poor use of city assets and unnecessary fleet fuel consumption.”

Jung says the smart waste collection solutions of the future will be able to track waste levels and provide route optimisation as well as operational analytics – providing new opportunities to optimise waste management: “More and more municipalities and waste service managers are realising that
these solutions can help them meet sustainability goals, improve services for residents and reduce operational costs [at the same time].”

She adds, “There is a growing awareness among city leaders of the potential benefits of multi-application approaches to the deployment of smart city infrastructure. At the heart of this transformation is IoT technology that connects a range of intelligent sensors and devices to monitor and automate city operations. Areas where technology is having the greatest impact include street lighting, public safety, traffic systems and waste collection.”

Jung’s observation comes on the back of TDC, Denmark’s largest telecoms company, and Cisco forming a partnership agreement in June 2016 to deploy a digital IoT city platform in Denmark. As part of the initiative, Dublin company SmartBin deployed its sensors to a range of waste and recycling containers that were integrated with the city’s digital platform. In addition, lamp posts and traffic lights were equipped with sensors that are able to send data to a control console at the town hall and allow real time monitoring of waste production.

A similar project took place locally in Australia 2015, when the Sunshine Coast Council partnered with Cisco and Telstra to develop the so-called Smart City Framework, a portfolio of 13 municipal service areas including waste management. Here, Enevo headed by Greg Howard and its Brisbane-based partner, Smarter Technology Solutions, saw the successful initial deployment of Enevo’s smart fill- level sensors.

“Another example of an integrated smart waste collection solutions are solar-powered waste bins equipped with Wi-Fi units,” Jung says. “While many smart city initiatives propose to provide public Wi-Fi hotspots, it can be expensive to lease areas to host the equipment. However, with Wi-Fi- enabled smart bins, cities can run access points by using the solar energy already collected by the bins.”

Leon Hayes from Solar Bins Australia has been instrumental in rolling out more BigBelly solar powered compacting bins across Australia. Melbourne has an impressive amount of bins with general waste bins sat next to recycling ones.

“Yet, despite the successful [early] deployments, there is still limited demand for smart waste collection solutions due to the lack of awareness about cost [recovery] and the effectiveness of the technology.”

Data Integration

The next phase will see sensor data pulled from dozens of different sensor manufacturers via API* into established telematics systems like that of Telogis which is a global leader in providing actionable data to waste fleet operators across the markets it operates in.

There is a huge amount of cost savings to be made through fleet optimisation and route planning. With more accurate data fleet operators can make decisions to improve efficiencies and still meet performance targets for their end clients.

Low Power Wide Area Networks

The other disruptor and ultimate enabler  will be the rollout of LPWAN connectivity across the region with Sigfox firmly leading the way in the Australian and NZ market.

LPWAN connected sensors like LoRa , Sigfox and NB-IoT allow sensors to operate on batteries for much longer periods and communicate over longer distances than traditional 3G powered devices.

Enevo has yet to transition to a LPWAN version of its sensor but companies like Solar Bins Australia and PiP IoT in Christchurch have developed versions which can then push data into 3rd party systems .

Glossary Term

*APIapplication-programming interface is a set of functions and procedures that allow the creation of applications which access the features or data of an operating system, application, or other service.

Sources and References

Enevo Oy – Finnish based Cleantech business using IoT Devices

Pip IoT – NZ based LPWAN sensor manufacturer of IoT devices

Solar Bins Australia – Australia based distributor of BigBelly and LPWAN Sensors.

Telogis – Market leading telematics provider

Waste Management Review – parts of article originally appeared earlier in 2017.

Leave a Reply

Your email address will not be published. Required fields are marked *